Tissue-specific insulator function at H19/Igf2 revealed by deletions at the imprinting control region.

نویسندگان

  • Folami Y Ideraabdullah
  • Joanne L Thorvaldsen
  • Jennifer A Myers
  • Marisa S Bartolomei
چکیده

Parent-of-origin-specific expression at imprinted genes is regulated by allele-specific DNA methylation at imprinting control regions (ICRs). This mechanism of gene regulation, where one element controls allelic expression of multiple genes, is not fully understood. Furthermore, the mechanism of gene dysregulation through ICR epimutations, such as loss or gain of DNA methylation, remains a mystery. We have used genetic mouse models to dissect ICR-mediated genetic and epigenetic regulation of imprinted gene expression. The H19/insulin-like growth factor 2 (Igf2) ICR has a multifunctional role including insulation, activation and repression. Microdeletions at the human H19/IGF2 ICR (IC1) are proposed to be responsible for IC1 epimutations associated with imprinting disorders such as Beckwith-Wiedemann syndrome (BWS). Here, we have generated and characterized a mouse model that mimics BWS microdeletions to define the role of the deleted sequence in establishing and maintaining epigenetic marks and imprinted expression at the H19/IGF2 locus. These mice carry a 1.3 kb deletion at the H19/Igf2 ICR [Δ2,3] removing two of four CCCTC-binding factor (CTCF) sites and the intervening sequence, ∼75% of the ICR. Surprisingly, the Δ2,3 deletion does not perturb DNA methylation at the ICR; however, it does disrupt imprinted expression. While repressive functions of the ICR are compromised by the deletion regardless of tissue type, insulator function is only disrupted in tissues of mesodermal origin where a significant amount of CTCF is poly(ADP-ribosyl)ated. These findings suggest that insulator activity of the H19/Igf2 ICR varies by cell type and may depend on cell-specific enhancers as well as posttranslational modifications of the insulator protein CTCF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-50: Embryo Loss Due to Epigenetic Anomaliesin the Male Germ Line: Role of Estrogen

Background: To investigate if aberrant methylation and expression of imprinted genes of the Igf2-H19 locus in the spermatozoa and embryos could be a paternal epigenetic factor involved in early embryo loss To elucidate the role of estrogen in acquisition of the imprinting at the Igf2-H19 locus during spermatogenesis Materials and Methods: Adult male rats of Holtzman strain were administered tam...

متن کامل

Developmentally regulated functions of the H19 differentially methylated domain.

Igf2 and H19 are physically linked imprinted genes. In embryonic liver, their reciprocal expression (paternal for Igf2 and maternal for H19) is controlled by a paternally methylated region (H19 DMD) located 5' of H19. This region contains a methylation-sensitive insulator that prevents the Igf2 promoters being activated by downstream enhancers on the maternal chromosome. In adult liver, Igf2 is...

متن کامل

Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function

Parent-of-origin-specific expression of the mouse insulin-like growth factor 2 (Igf2) gene and the closely linked H19 gene are regulated by an intervening 2 kb imprinting control region (ICR), which displays parentspecific differential DNA methylation [1] [2]. Four 21 bp repeats are embedded within the ICR and are conserved in the putative ICR of human and rat Igf2 and H19, suggesting that the ...

متن کامل

Non-random, individual-specific methylation profiles are present at the sixth CTCF binding site in the human H19/IGF2 imprinting control region.

Expression of imprinted genes is classically associated with differential methylation of specific CpG-rich DNA regions (DMRs). The H19/IGF2 locus is considered a paradigm for epigenetic regulation. In mice, as in humans, the essential H19 DMR--target of the CTCF insulator--is located between the two genes. Here, we performed a pyrosequencing-based quantitative analysis of its CpG methylation in...

متن کامل

Mechanisms causing imprinting defects in familial Beckwith-Wiedemann syndrome with Wilms' tumour.

The imprinted expression of the IGF2 and H19 genes is controlled by the Imprinting Centre 1 (IC1) at chromosome 11p15.5. This is a methylation-sensitive chromatin insulator that works by binding the zinc-finger protein CTCF in a parent-specific manner. Microdeletions abolishing some of the CTCF target sites (CTSs) of IC1 have been associated with the Beckwith-Wiedemann syndrome (BWS). However, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 23 23  شماره 

صفحات  -

تاریخ انتشار 2014